人工智能为什么在2C市场早期的普及有一定的困难?
科技成熟都需要一定的时间,因为从任何技术普及演进的角度,几乎都延续了先是从军工(航天)、到政府、到企业、到B2B2C、再到2C这个规律。人工智能也一样,目前人工智能在2C市场还不是很成熟。简单说机器人,在个人消费者市场,出货量大的机器人只有4类产品:扫地机器人、无人机、STEAM教育类机器人和亚马逊ECHO为代表的智能音箱。为什么2C市场早期的普及有一定的困难,简单讲几个原因:
人工智能:为什么说未来只做技术提供商价值会越来越小?
人工智能:为什么说未来只做技术提供商价值会越来越小?现在很多人工智能创业者都是技术背景出身,创业的第一个想法通常是做技术提供商。技术提供商作为创业的敲门砖可以。但如果只定位做技术提供商,未来路会非常窄。为什么说未来只做技术提供商价值会越来越小?原因有几点:人工智能创业选择
第一、产业链不成熟;做一个创新的东西,成品有10个部件。每一个部件都得自己做,而且因为出货量不大,每个部件都没有规模效应,这就导致每个部件都很贵,那你最后做出成品一定很贵。这是非常大的问题。
第二、2C是额外花钱;这也是很重要的一个问题,2C端的用户因为自掏腰包、额外花钱,所以对价格通常比较敏感,产品很贵就是一个很大的门槛。
第三、2C产品的用户期待度高;用户买了这么贵的东西,自然对产品的期待度会更高很多。大家觉得我买一个机器人回来,恨不得什么都能干:又能唱歌、又能跳舞、又能聊天、又能清洁、又能讲英语。但这是不现实的,现在的技术成熟度离此还有些远。
相对于2C端,这些问题在2B端却不是问题。
第一、2B端对价格承受能力更高;首先,企业对价格的承受能力显然比2C强很多。你说一个机器人2万,2C消费者不可能买,但企业问题不大,企业对成本承受能力高。
第二、2B的核心目的是降成本;举例工业机器人,10万块钱一个,听起来很贵。但一个工业机器人替代你2个岗位。这2个岗位一年也得10万块钱,还不算四险一金。然后这机器人能工作4年,这一下成本只有你原来的25%,甚至不到。那么企业一算账,觉得还是很便宜。
第三、2B可以采取人机混合模式;还有2B端的机器人应用更简单一些。一方面大多是单任务,机器人只要做好一件事就行了,实现起来简单。另外,很多都是以"人机混合"模式在作业。也就是以前需要10个人干活,现在我用机器人替代一半人。简单重复的工作用机器人替代,复杂的用剩下的5个人,这就是"人机混合"模式。
举个例子,现在国内外已有很多安保机器人,按固定路线去巡逻。你可以理解为移动的摄像头,当然算法上肯定加入了一些识别的东西。固定绕路线巡逻,这个完全可以交给机器人来做。难的是,在巡逻的过程中,如果发现有老太太摔倒了,让机器人扶起来,这个目前还做不到。
但这不重要,你们后台不还有5个人么,让他们过来就好了。所以人机混合是2B比较主流的模式,这个大幅降低了机器人普及的难度。
最后再说一点,目前大多数AI创业公司都是技术专家主导,这很容易理解,因为现在技术还有壁垒,技术专家主导起码保证产品能做出来。不过未来随着技术门槛的降低,特别在“非关键应用”领域里,团队的核心主导,会慢慢过渡到产品经理和行业专家为主,因为他们离用户需求最近。“非关键应用”领域,懂需求比技术实现更重要。长期来看,人工智能创业和任何其他领域的创业一样,一定是综合实力的比拼!
企链通(https://qlt.tc755.com/)是目前全国深度供应链商企平台,撮合企业产品供需的基础上,提供供应链金融、商会入驻、对外出口贸易服务,提供国际追溯领域内最具公信力的追溯云服务。是谷融集团在产业联盟管理、国家追溯体系认证、深度供应链管理版块的真实落地。
人工智能为什么在2C市场早期的普及有一定的困难?
2018-03-09 浏览:9